
SteelConnection Documentation
Release 1.1.8

Greg Mueller

Jun 25, 2020

SteelConnection User’s Guide:

1 License 3

2 Getting Help 5
2.1 Getting Help with SteelConneciton: . 5
2.2 SteelConnect CX API Reference: . 5

3 Getting Started 7
3.1 Prerequisites . 7
3.2 Create an Object: . 7
3.3 Quickstart . 7

4 Installation 9
4.1 Install . 9
4.2 Upgrade to latest version . 9

5 Tutorial 11
5.1 Finding the realm and org name . 11
5.2 Create the SteelConnection object . 11
5.3 Find the ID for our Organization . 11
5.4 Create a new site . 12
5.5 Set uplink to static IP . 12
5.6 Create virtual gateway . 13
5.7 Assign Port to Zone . 13
5.8 Download Virtual Gateway image . 14
5.9 Fin . 14

6 Authentication 15
6.1 Unattended Mode . 15

6.1.1 Specifying authentication credentials . 15
6.1.2 Using environment variables . 15
6.1.3 Using a .netrc file . 16

6.2 Interactive login . 16
6.2.1 Connection attempts . 16

7 API Guide 17
7.1 Realms and Organizations . 17
7.2 Understanding the API . 17

i

7.3 Available Methods . 17
7.4 A Tale of Two APIs . 18
7.5 Crafting your API calls . 18

7.5.1 Model Schema (Data Payload): . 19
7.6 Retrieving Data . 19

8 Errors and Exceptions 21
8.1 Specific Exceptions: . 21
8.2 Alternate Error Behavior . 21

9 Logging 23

10 Convenience Functions 25
10.1 Lookup . 25

10.1.1 Lookup Organization . 25
10.1.2 Lookup Node . 26
10.1.3 Lookup Site . 26
10.1.4 Lookup WAN . 26
10.1.5 Lookup Model . 26

10.2 Virtual Appliance Image Download . 26
10.2.1 download_image . 26
10.2.2 Other Binary Data . 27

10.3 Input functions . 27
10.3.1 Get Input . 27
10.3.2 Get Username . 27
10.3.3 Get Password . 27

10.4 sshtunnel . 27

11 Examples 29
11.1 create_site.py . 29
11.2 get_ports.py . 30
11.3 set_node_location.py . 31
11.4 ssh_to_appliance.py . 33
11.5 virtual_image_download.py . 35

12 Indices and tables 37

ii

SteelConnection Documentation, Release 1.1.8

Simplify access to the Riverbed SteelConnect CX REST API.

______ __
/ __/ /____ ___ / /

____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___

/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/

version = "1.1.8"
pip install steelconnection

• Always crafts a correct URL based on the resource provided.

• Accepts and returns native Python data: no need to convert to/from JSON.

• Provides convinience methods for object lookup and image download.

• Reuses TCP connection for subsequent API requests.

Supports:
Python 2.7, 3.4, 3.5, 3.6, 3.7

With SteelConnection, a request to get a list of all organizations in the realm would look like this:

orgs = sc.get('orgs')

Without SteelConnection, the same request would look like this:

response = requests.get(
'https://REALM.riverbed.cc/api/scm.config/1.0/orgs',
auth=(username, password)

)
orgs = response.json()['items']

SteelConnection User’s Guide: 1

SteelConnection Documentation, Release 1.1.8

2 SteelConnection User’s Guide:

CHAPTER 1

License

MIT License

Copyright (c) 2018-2020 Greg Mueller

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3

SteelConnection Documentation, Release 1.1.8

4 Chapter 1. License

CHAPTER 2

Getting Help

2.1 Getting Help with SteelConneciton:

For help with SteelConneciton (this Python package) open an issue on the project home page.
https://github.com/grelleum/SteelConnection

If you decide to post an issue, please keep the following in mind:

• Errors are meaningless without the code that produced those errors.

• If your code does not produce the result you expect, let me know what results you expected.

• Please wrap your code in triple-backtics so that all indentation will be preserved.
https://guides.github.com/features/mastering-markdown/

Here is how code and errors should be posted when opening an issue on GitHub:

```
for this in that:

print('triple backticks makes your code...')
print('...look the same as it does in your editor!')

```

2.2 SteelConnect CX API Reference:

The SteelConnect CX API is documented as two APIs:

Config API: Read and change configuration.
https://support.riverbed.com/apis/scm_beta/scm-2.11.0/scm.config/index.html

5

https://github.com/grelleum/SteelConnection
https://guides.github.com/features/mastering-markdown/
https://support.riverbed.com/apis/scm_beta/scm-2.11.0/scm.config/index.html

SteelConnection Documentation, Release 1.1.8

Reporting API: Get current status information.
https://support.riverbed.com/apis/scm_beta/scm-2.11.0/scm.reporting/index.html

6 Chapter 2. Getting Help

https://support.riverbed.com/apis/scm_beta/scm-2.11.0/scm.reporting/index.html

CHAPTER 3

Getting Started

3.1 Prerequisites

• Make sure the REST API is enabled on your SteelConnect CX realm before trying to access the REST API.

• Use pip to install steelconnection as shown above.

pip install steelconnection

3.2 Create an Object:

• Import steelconnection and create a new object.

import steelconnection
sc = steelconnection.SConnect()

3.3 Quickstart

See the examples folder for sample scripts.
https://github.com/grelleum/SteelConnection/tree/master/examples

7

https://github.com/grelleum/SteelConnection/tree/master/examples

SteelConnection Documentation, Release 1.1.8

8 Chapter 3. Getting Started

CHAPTER 4

Installation

4.1 Install

pip install steelconnection

4.2 Upgrade to latest version

pip install --upgrade steelconnection

9

SteelConnection Documentation, Release 1.1.8

10 Chapter 4. Installation

CHAPTER 5

Tutorial

In this tutorial, we are going to create a new site, configure static IP address on the uplinks and deploy a virtual gateway
to that site.

5.1 Finding the realm and org name

When you manage an organization in the SteelConnect CX Manager via a web browser, the URL will look something
like this:

https://<REALM_FQDN>/admin/<ORG_SHORT_NAME>

The <REALM_FQDN> and <ORG_SHORT_NAME> will be unique to your setup and you will need these to follow
the tutorial.

5.2 Create the SteelConnection object

Let’s start by creating a SteelConnection object.

• Use the steelconnection.SConnect constructor to create the object.

• We will assign this new object to the name sc.

• We will provide the name of our realm, as well as the username and password we use to login.

import steelconnection
sc = steelconnection.SConnect('myrealm.riverbed.cc', 'admin', 'LetM3in')

5.3 Find the ID for our Organization

We need to know the Org ID for our Organization. This is easy since we got the Org short name from the SteelConnect
CX URL.

11

https:/

SteelConnection Documentation, Release 1.1.8

The .lookup.org method will return a dictionary representing the org object. That dictionary will include a key
called id that holds the org id.

Replace ORG_SHORT_NAME with your Org's short name.
org_id = sc.lookup.org('ORG_SHORT_NAME')['id']

5.4 Create a new site

Create a dictionary that represents the site we want to create. At a minimum, we must specify the name, longname,
city, and country.

The country specified must be in the standardized two letter format. Here is one source for these codes:
https://www.willmaster.com/blog/misc/country-name-abbreviation.php

If this site will reside in a timezone that is different from the Organization timezone, then you will want to specify the
timezone for this site. Timezones must be provided in the same format as the ‘TZ’ column in this list:
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List

Once we have our new site dictionary created, we can send a POST request to the resource ‘/org/<ORG_ID>/sites’.

Dictionary containing the details for the site to be created:
new_site = {

'name': 'NYC',
'city': 'New York',
'country': 'US',
'longname': 'New York test lab.',
'timezone': 'America/New_York',

}

Created site
resource = '/org/{}/sites'.format(org_id)
site = sc.post(resource, data=new_site)

The post command will return the newly created site, which we have assigned to the name ‘site’.

5.5 Set uplink to static IP

Here we will set the uplink to use a static IP address. When you create a new site, it new uplink will be created for
that site. The site object will include a list of uplinks for that site. Since our site only has one uplink, we can access
the uplink ID using index zero.

Get the uplink ID from the site object, index 0.
uplink_id = site['uplinks'][0]

Get uplink object from SteelConnect CX Manager.
uplink = sc.get('uplink/' + uplink_id)

12 Chapter 5. Tutorial

https://www.willmaster.com/blog/misc/country-name-abbreviation.php
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List

SteelConnection Documentation, Release 1.1.8

Next, we will change the uplink type from ‘dhcp’ to ‘static’, and configure an IP address and default gateway. The
change we are making is to the local dictionary object, so we will need to upload the changes to the SteelConnect CX
Manager.

Set uplink to static and define IP addresses.
uplink['type'] = 'static'
uplink['static_ip_v4'] = '172.30.12.249/29'
uplink['static_gw_v4'] = '172.30.12.254'

Upload modified object to the SCM.
result = sc.put('uplink/' + uplink_id, data=uplink)

5.6 Create virtual gateway

Let’s create a virtual gateway in the new site we have created. The virtual gateway has the model name ‘yogi’ so we
need to specify that model, as well as the site ID.

Create dictionary with minimum required information.
new_node = { 'site': site['id'], 'model': 'yogi' }

POST request to SteelConnect CX Manager.
node = sc.post('/org/' + org_id + '/node/virtual/register', data=new_node)

5.7 Assign Port to Zone

At this point, the virtual gateway should have it’s first network interface assigned to the site uplink. However, no
interfaces will be assigned to our LAN zones, so we will do that now, before we generate and download the virtual
gateway image.

When we created the new site earlier, a network and a zone were created and associated with this site. We want
to configure the zone to the third network interface on our gateway (we are reserving the second interface for other
purposes, like as a second uplink or HA control port).

The site has a ‘networks’ key that includes the networks at that site. We need to retreive the network object in order to
get the zone ID. The zone will be assigned to the network interface.

Get network ID from site.
Since there is only one network associated to this site,
we take the first one (index zero).
net_id = site['networks'][0]

Retreive the network from SteelConnect CX Manager.
network = sc.get('/network/' + net_id)

Get Zone ID from the network object.
zone_id = network['zone']

Now we can assign this zone to the third network interface.
First, we get the port ID from the node.
Note that since indexes start at zero, the third port is at index '2'.
port_id = node['ports'][2]

Retreive the port from SteelConnect CX Manager.

(continues on next page)

5.6. Create virtual gateway 13

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

port = sc.get('/port/' + port_id)

Set the 'segment' key to the zone ID.
port['segment'] = zone_id

We can also disable tagging for this port.
It should already be disabled, since that it the default state.
port['tagged'] = 0

Upload port to the SteelConnect CX Manager.
result = sc.put('/port/' + port_id, data=port)

5.8 Download Virtual Gateway image

SteelConnection provides a convenience method to generate and download virtual gateway images.

Here we specify the destination filename as 'vgw.zip1',
and the type of hypervisor as 'kvm'.

sc.download_image(save_as='vgw.zip', build='kvm')

5.9 Fin

This completes the tutorial. I hope this gets you on your way to productive use of SteelConnection.

14 Chapter 5. Tutorial

CHAPTER 6

Authentication

SteelConnect CX REST API version 1.0 uses ‘Basic Auth’, which requires a username and password are required for
every request made. The steelconnection object can store the username and pssword for you, or you can use a .netrc
file as detailed below.

Authentication credentials can be prompted for interactively if not supplied, or they can be supplied at the time of
object creation to prevent the interactive method. Scripts that need to run unattended should supply credentials at the
time of object creation.

6.1 Unattended Mode

6.1.1 Specifying authentication credentials

import steelconnection

sc = steelconnection.SConnect('REALM.riverbed.cc', 'username', 'password')

6.1.2 Using environment variables

It is best practice not to hard-code authentication credentials in your scripts. One option is to use operating system
environment variables.

Here is an example of using environment variables to store authentication.

import os
import steelconnection

username = os.environ.get('SCONUSER')
password = os.environ.get('SCONPASSWD')

sc = steelconnection.SConnect('REALM.riverbed.cc', username, password)

15

SteelConnection Documentation, Release 1.1.8

6.1.3 Using a .netrc file

A .netrc file can be used to store credentials on Mac, Unix, and Linux machines. .netrc is a standard way of storing
login credentials for many network based servers. It works like a hosts file. Each line in .netrc specifies a hostname,
along with the username and password used to access that server. The .netrc file is stored in the root of your home
directory.

When using a .netrc file, steelconnection will not have your password, rather the underlying requests library will be
responsible for accessing the .netrc file.

Since .netrc access performs a lookup on the ‘machine’ field, you will still need to specify the realm you want to
access, and that hostname will be passed to requests without credentials. Requests will perform the lookup in the
.netrc file.

On Mac or Linux, you can the commands below to setup a .netrc file, replacing REALM, USERNAME, and PASS-
WORD with your actual values.

echo "machine REALM.riverbed.cc login USERNAME password PASSWORD" >> ~/.netrc
chmod 600 ~/.netrc

To prevent SteelConnection from prompting for authentication credentials, you must explicitly tell SteelConnection to
use the .netrc file.

sc = steelconnection.SConnect('REALM.riverbed.cc', use_netrc=True)

6.2 Interactive login

If you do not specify a realm, username, or password, and a .netrc file is not configured, steelconnection will interac-
tively prompt you for your the missing information. Steelconnection will validate the login by making a ‘status’ call
against the REST API.

>>> import steelconnection
>>> sc = steelconnection.SConnect()
Enter SteelConnect CX Manager fully qualified domain name: REALM.riverbed.cc
Enter username: admin
Enter password:
>>>

6.2.1 Connection attempts

Three connection attempts are allowed by default. After the third attempt an AuthenticationError exception will be
raised. You can change the number of allowed login attempts by adding the connections_attempts=N param-
eter, when creating the steelconnection object. Replace N with an interger. Setting connections_attempts=0
will prevent the interactive login from running. This is useful in testing and may have other applications.

16 Chapter 6. Authentication

CHAPTER 7

API Guide

7.1 Realms and Organizations

There is a one to one relationship between a Realm and a SteelConnect CX Manager. The SteelConnect CX Manager
acts as the controller for a the realm. A newly created realm would not have any organizations, otherwise a realm will
have one or more organizations. Each oganization within a realm acts an autonomous network system. In practice,
most REST API operations are performed within a specific organization.

You normally access the SteelConnect CX Manager (SCM) using a web browser.
The URL you use includes the realm and organization that you are managing and takes the form:
https://realm.riverbed.cc/admin/Organization.
The Organization is case-sensistive and is also known as the organization short name, as opposed to the longname,
which is more descriptive and can include spaces, and other characters.

7.2 Understanding the API

The Riverbed SteelConnect CX REST API allows HTTPS access to the SteelConnect CX Manager (SCM) via the use
of GET, POST, PUT, and DELETE commands. SteelConneciton (this module) acts to simplify coding by providing
an object that remembers your realm, version, and authentication and builds the HTTPS requests based on that infor-
mation. A requests.session object is used to allow a single TCP connection to be re-used for all subsequent
API requests.

7.3 Available Methods

SteelConneciton provides the .get, .getstatus, .post, .put, and .delete methods to simplify access to
the API.

17

SteelConnection Documentation, Release 1.1.8

These methods will build the request to include api version, auth, etc, so you onlu need to specify the resource you
are interrested in.

• get: Used for retrieving information about a resource. Expect data to be returned.

• getstatus: Used for retrieving current status about a resource. Expect data to be returned.

• post: Create or deploy a new resource. Requires additional data in the payload and returns the newly created
object.

• put: Use to edit or update some existing resource. Requires additional data in the payload.

• delete: Delete an existing resource.

7.4 A Tale of Two APIs

Riverbed divides the REST API into two APIs: * Config: used to make configurations changes and get information
about SteelConnect CX resources.
https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.config/index.html * Reporting: used to get current status
information about a resource.
https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.reporting/index.html

By nature, the Reporting API only requires the HTTP GET method, where-as the more commonly used Confg API
requires GET, POST, PUT and DELETE. SteelConnection combines the two APIs by implementing .get, .post,
.put, and .delete methods to access to Config API and the .getstatus method to access the Reporting API.

For example: Calling .get('/port/' + port) would retireve configuration settings on a port, where-as .
getstatus('/port/' + port) would retreive the actual link state, speed, duplex, etc. for that port.

7.5 Crafting your API calls

The Riverbed documentation describes the various REST API calls that can be made.
These take the form: “HTTP Method” “resource path”.

Take the network section for example:
https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.config/index.html#!/network:

• GET /networks List networks.

• GET /org/:orgid/networks Get network for an org.

• POST /org/:orgid/networks Create network within an org.

• DELETE /networks/:netid Delete network.

• GET /networks/:netid Get network.

• PUT /networks/:netid Update a network.

Within the resource path, you may see a name preceded by a colon :. These are considered variables and must be
replaced with an actual value. The /networks/:netid would require the :netid be replaced with the actual
network ID for the network you are requesting.

18 Chapter 7. API Guide

https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.config/index.html
https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.reporting/index.html
https://support.riverbed.com/apis/scm_beta/scm-2.11.1/scm.config/index.html#!/network

SteelConnection Documentation, Release 1.1.8

SteelConnection methods mimic the HTTP Methods and accept the short form resource paths.
To update a network, the documentation lists PUT /networks/:netid. With the SteelConnection object, you
would call the put method as sc.put('/network/' + net_id). Note that the leading / in the resource is
optional as the SteelConnection object will insert it if it is missing.

7.5.1 Model Schema (Data Payload):

Post (create) and Put (update) requests require additional data in the form of a payload. This gets sent to the server in
the form of JSON data, however the SteelConnection object will accept either JSON data or a native Python dictionary
(isinstance(data, dict)). The Riverbed documentation will specify the format of the data as a “Model
Schema”. Not everything listed in the model schema is required. Generally, you can determine the minimum required
data by checking the equivalent function in SteelConnect CX Manager web GUI.

7.6 Retrieving Data

The SteelConnection methods leverage the popular requests package. Methods calls always return a native Python
dictionary, or a list of dictionaries, depending on the API call. The requests.response object will be stored as
an attribute of the object (sc.response) so the latest response is always easily accessible. By providing the full
requests.response object you are free to check status and see all headers.

For example, the ‘get orgs’ request should always provide a list of orgs within the realm, so we can directly assign the
result as a native Python list.
list_of_all_orgs = sc.get('orgs')

Here are the rules to determine what gets returned by an API request:

• If response.json() is True and the ‘items’ key exists, then return a python list of response.json()[‘items’].

• If response.json() is True and the ‘items’ key does not exist, then return a python dictionary.

• If response.json() is False, return an empty python dictionary.

7.6. Retrieving Data 19

SteelConnection Documentation, Release 1.1.8

20 Chapter 7. API Guide

CHAPTER 8

Errors and Exceptions

The Zen of Python states:
Errors should never pass silently.
Unless explicitly silenced.

With this in mind, steelconnection assumes all REST API calls should complete without error. Succeful requests will
return with an HTTP 200-level response. Any other response if considered a failed request and will cause steelcon-
nection to raise either a RuntimeError, or a custom exceptions that inherits from RuntimeError. Exception
handling can be used to catch the exception:

try:
sc.put(f'node/{node_id}', data={'location': 'LAB'})

except RuntimeError as e:
your_code_to_handle_exception(e)

8.1 Specific Exceptions:

Exception HTTP code Reason
AuthenticationError 401 Incorrect username and password.
APINotEnabled 502 Rest API is not enabled on Realm.
BadRequest 400 Tried creating a resource that already exists.
InvalidResource 404 Path or resource not found.
ResourceGone 402 Resource no longer available.

8.2 Alternate Error Behavior

If you prefer to have your script exit with a simple error message and no traceback, which can be confusing to users
who are not programmers, you can set on_error='exit' when you create your SConnect object.

21

SteelConnection Documentation, Release 1.1.8

sc = SConnect('REALM.riverbed.cc', on_error='exit')

If you prefer to handle errors manually and do not want steelconnection to generate exceptions based on HTTP re-
sponse code, you can set on_error=None when you create your SConnect object. The steelconnection object
will evaluate as True after a successful request and False otherwise. This reflects the status of the obect attribute
SConnect.response.ok.

sc = SConnect('REALM.riverbed.cc', on_error=None)

22 Chapter 8. Errors and Exceptions

CHAPTER 9

Logging

Real-time logging can be enabled by placing the following code near the top of your script.

import logging

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

This will provide details on what has been sent to and received from the SteelConnect CX manager.

The code above will display logging to standard output (the screen). Here is alternative code that can be used to log to
a file:

import logging

logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(name)s.%(levelname)s]: %(message)s",
filename='steelog.txt',

)
logger = logging.getLogger(__name__)

The inclusion of the filename parameter, sends it to a file, while the format parameter adds a timestamp to each logged
message.

23

SteelConnection Documentation, Release 1.1.8

24 Chapter 9. Logging

CHAPTER 10

Convenience Functions

Convenience methods and functions are available to accomplish common tasks.

10.1 Lookup

Lookup methods provide simplified ways of finding objects.

The SteelConnect CX Manager stores resources in a database with a uniquie identifier (id). Many API calls require that
you know the id number of the resource you are interested in, which you might not know off hand. SteelConnection
provides a collection of lookup functions to look up the resources based on known values. These functions return
the actual resouce.

These are the available lookup functions:

<object>.lookup.org(org_short_name)
<object>.lookup.node(serial)
<object>.lookup.site(site_name, org['id'])
<object>.lookup.wan(wan_name, org['id'])
<object>.lookup.model(model)

These functions are accessed directly from the object you created and are specific to the SteelConnect CX API.

10.1.1 Lookup Organization

Many REST API calls require that you know the org id of your organization. You can provide the organization short
name to the function and it will return the org object, which includes the ‘id’ as a field.

>>> org = sc.lookup.org('Spacely')
>>> org['id']
'org-Spacely-0a0b1cbadb33f34'
>>>

25

SteelConnection Documentation, Release 1.1.8

10.1.2 Lookup Node

Similarly, the lookup.node method exists to provide the node object when you supply the commonly known
appliance serial number.

>>> node = sc.lookup.node('XN00012345ABCDEF')
>>> node['id']
'node-56f1968e222ab789'
>>>

10.1.3 Lookup Site

The site id can be found in a similar way, but since the same site name could exist in multiple organizations, the org_id
is also required.

>>> site = sc.lookup.site('Skypad', orgid='org-Spacely-0a501e7f27b2c03e')
>>> site['id']
'site-Skypad-884b9071141e4bc0'
>>>

10.1.4 Lookup WAN

The site id can be found in a similar way, but since the same site name could exist in multiple organizations, the org_id
is also required.

>>> wan = sc.lookup.site('MPLS', orgid='org-Spacely-0a501e7f27b2c03e')
>>> wan['id']
'wan-MPLS-f26c9eb4f80a868b'
>>>

10.1.5 Lookup Model

The lookup.model() method is simply a translation service to map model code names to standard model names.
It can also be used to make the opposite translations:

>>> sc.lookup.model('panda')
'SDI-130'
>>> sc.lookup.model('SDI-1030')
'grizzly'
>>>

10.2 Virtual Appliance Image Download

10.2.1 download_image

There is a convenience method .download_image that can be used to download a virtual appliance image file.
This method will optionally request the ‘build’ of a virtual appliance image, when you set build= a vm type, such
as build=kvm or build=ova. Then it will check the availability of the image file every one second until the file
is found. Next it will download the file to the location specifed by the save_as= parameter. download_image

26 Chapter 10. Convenience Functions

SteelConnection Documentation, Release 1.1.8

will print status messages while checking the status and downloading the file. To disable status messages, include the
quiet=True parameter. Here are some examples:

Build kvm image and specify the downloads folder and filename.
sc.download_image(node['id'], save_as='Downloads/scon_vgw.zip', build='kvm')

Build a hyperv image and download to the current directory using the default file
→˓name.
sc.download_image(node['id'], build='hyperv')

Download an existing image to /images/ directory and suppress status updates.
sc.download_image(node['id'], save_as='/images/scon_vgw.zip', quiet=True)

10.2.2 Other Binary Data

In the event another API call returns binary data, You can access it directly through the object’s ‘.response.content’
attribute, or by calling the ‘.savefile(filename)’ method, which will save the binary data to a file.

10.3 Input functions

These functions are accessed directly from the imported module and can be used independently of the SteelConnect
CX API.

10.3.1 Get Input

get_input(prompt) function works with both Python 2 and Python 3 to get user input.

10.3.2 Get Username

get_username(prompt) function works with both Python 2 and Python 3 to get username.

10.3.3 Get Password

get_password(prompt) function works with both Python 2 and Python 3 to get user input. Uses getpass to
provide discretion. Requires user to type password twice for verification.

10.4 sshtunnel

The sshtunnel method provides an easy way to start, stop, or restart a reverse SSH tunnel.

<object>.sshtunnel(node_id, timeout=15, restart=False, stop=False)

Examples:

10.3. Input functions 27

SteelConnection Documentation, Release 1.1.8

Start ssh tunnel. Wait as long as 15 seconds for tunnel to establish.
result = <object>.sshtunnel(node_id)

Start ssh tunnel. Increase timeout to 30 seconds for tunnel to establish.
result = <object>.sshtunnel(node_id, timeout=30)

Stop an existing ssh tunnel.
result = <object>.sshtunnel(node_id, stop=True)

Stop an existing ssh tunnel and re-establish tunnel.
result = <object>.sshtunnel(node_id, restart=True)

Returns a dictionary object with the state of the tunnel, or an empty dictionary if stop=True.

28 Chapter 10. Convenience Functions

CHAPTER 11

Examples

Examples scripts to get you started.

11.1 create_site.py

coding: utf-8

______ __
/ __/ /____ ___ / /
____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___
/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/
#
SteelConnection
Simplify access to the Riverbed SteelConnect CX REST API.
#
https://pypi.org/project/steelconnection
https://github.com/grelleum/SteelConnection

from __future__ import print_function
from pprint import pprint

import steelconnection

Change the below values to match the realm and org
as seen in the URL for your SteelConnect CX Manager.
for example: https://realm.riverbed.cc/admin/TestLab
scm_name = "realm.riverbed.cc"
org_name = "TestLab"

Details for the site to be created:

(continues on next page)

29

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

new_site = {
"name": "NYC",
"city": "New York",
"country": "US",
"longname": "New York test lab.",
"timezone": "America/New_York",

}

def main():
Initialize the steelconnection object.
sc = steelconnection.SConnect(scm_name)

Get the org ID for your organization.
org = sc.lookup.org(org_name)
print("Org name: {}, Org id: {}".format(org["longname"], org["id"]))

API resource for posting.
resource = "/org/{}/sites".format(org["id"])

Make the post request.
result = sc.post(resource, data=new_site)

Display response.
print("Response:", sc.response.status_code, sc.response.reason)
pprint(result)

if __name__ == "__main__":
main()

11.2 get_ports.py

coding: utf-8

______ __
/ __/ /____ ___ / /
____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___
/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/
#
SteelConnection
Simplify access to the Riverbed SteelConnect CX REST API.
#
https://pypi.org/project/steelconnection
https://github.com/grelleum/SteelConnection

"""List port information for a SteelConnect CX appliance."""

from __future__ import print_function

import steelconnection
(continues on next page)

30 Chapter 11. Examples

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

def main():
sc = steelconnection.SConnect()

appliance = steelconnection.get_input("Enter appliance serial number: ")
node = sc.lookup.node(appliance)

ports = sc.get("node/" + node["id"] + "/ports")

line = "{:14}{:10}{:8}{:8}{:8}"
print(line.format("\nPort ID", "ifname", "Link", "Speed", "Duplex"))
print(line.format("-------", "------", "----", "-----", "------"))

for port in ports:
resource = "port/{}".format(port["id"])
port_status = sc.getstatus(resource)
print(

line.format(
port["port_id"],
port["ifname"],
"UP" if port_status["link"] else "DOWN",
port_status["speed"],
port_status["duplex"],

)
)

print()

if __name__ == "__main__":
main()

11.3 set_node_location.py

#!/usr/bin/env python

coding: utf-8

______ __
/ __/ /____ ___ / /
____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___
/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/
#
SteelConnection
Simplify access to the Riverbed SteelConnect CX REST API.
#
https://pypi.org/project/steelconnection
https://github.com/grelleum/SteelConnection

"""Update SteelConnect CX nodes within a specified Org
by copying the site name to the location field

(continues on next page)

11.3. set_node_location.py 31

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

for those nodes where the location is unset.

Works with both Python2 and Python3.

USAGE:
set_node_location.py REALM.riverbed.cc organization
set_node_location.py REALM.riverbed.cc organization -u $USER -p $PASSWD

"""

from __future__ import print_function
import argparse
import sys
import steelconnection

def main(argv):
"""Update nodes."""
args = arguments(argv)

realm, organization = args.realm, args.organization
if organization.endswith(".cc") and not realm.endswith(".cc"):

realm, organization = organization, realm

sc = steelconnection.SConnect(realm, username=args.username, password=args.
→˓password)

Find the target organization.
org = sc.lookup.org(organization)
print("\nOrg:", organization, "\tID:", org["id"])

Get list of all sites in target organization.
sites = sc.get("org/{}/sites".format(org["id"]))
print(status("site", sites, "in '{}'".format(organization)))

Create a map of site id to site name.
site_names = {site["id"]: site["name"] for site in sites}

Get list of all nodes in target organization.
nodes = sc.get("org/{}/nodes".format(org["id"]))
print(status("node", nodes, "in '{}'".format(organization)))

Reduce list of nodes to those assigned to a site.
nodes = [node for node in nodes if node["site"]]
print(status("node", nodes, "assigned to a site"))

Reduce list of nodes to those not already assigned a loction.
nodes = [node for node in nodes if not node["location"]]
print(status("node", nodes, "with no specified location"))

Update location for the remaining nodes.
return update_nodes(nodes, sc, organization, org["id"], site_names)

def update_nodes(nodes, sc, organization, org_id, site_names):
"""Loop through nodes and push location to SCM where applicable."""
for node in nodes:

(continues on next page)

32 Chapter 11. Examples

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

print("=" * 75)
print("Node:", node["id"], node["serial"], node["model"])
print("org:", node["org"], organization)
print("site:", node["site"])
print("location:", node["location"])

site_id = node["site"]
site_name = site_names[site_id]
print("\nSetting location to '{}'".format(site_name))
node["location"] = site_name
result = sc.put("node/" + node["id"], data=node)
print("updated location:", result["location"])
print("Response:", sc.response.status_code, sc.response.reason, "\n")
print()

def status(category, values, suffix=""):
"""Return status in human-readable format."""
size = len(values)
pluralization = "" if size == 1 else "s"
return "* Found {} {}{} {}.".format(size, category, pluralization, suffix)

def arguments(argv):
"""Get command line arguments."""
description = (

"Update SteelConnect CX nodes within a specified Org "
"by copying the site name to the location field "
"for those nodes where the location is unset."

)
parser = argparse.ArgumentParser(description=description)
parser.add_argument(

"realm", type=str, help="Domain name of SteelConnect CX Manager"
)
parser.add_argument("organization", type=str, help="Name of target organization")
parser.add_argument(

"-u", "--username", help="Username for SteelConnect CX Manager (optional)"
)
parser.add_argument(

"-p", "--password", help="Password for SteelConnect CX Manager (optional)"
)
return parser.parse_args()

if __name__ == "__main__":
result = main(sys.argv[1:])

11.4 ssh_to_appliance.py

#!/usr/bin/env python3

coding: utf-8

______ __

(continues on next page)

11.4. ssh_to_appliance.py 33

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

/ __/ /____ ___ / /
____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___
/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/
#
SteelConnection
Simplify access to the Riverbed SteelConnect CX REST API.
#
https://pypi.org/project/steelconnection
https://github.com/grelleum/SteelConnection

"""
SSH to SteelConnect CX appliances and run commands.
Uses Paramiko for SSH access.

Written using 'f-strings' for Python 3.6 or higher.
"""

import paramiko
import steelconnection

REALM = "myrealm.riverbed.cc"

appliances = [
"XN1111111AAAAAAA",
"XN2222222BBBBBBB",

]

commands = ["ip -4 a", "lpm routes"]

def main():
"""SSH to appliances and run commands."""

sc = steelconnection.SConnect(REALM)

for appliance in appliances:

Get node ID ffrom serial number.
node_id = sc.lookup.node(appliance)

Start reverse SSH tunnel from appliance to SCM.
tunnel = sc.sshtunnel(node_id)

Setup proxy command for Paramiko
hostname = f"{appliance}.{REALM}"
proxy_command = f"nc -X connect -x {REALM}:3903 {hostname} 22"

Create a scoket for the proxied connection.
sock = paramiko.proxy.ProxyCommand(proxy_command)

Create paramiko client.
client = paramiko.SSHClient()

(continues on next page)

34 Chapter 11. Examples

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Make SSH connection to appliance.
client.connect(hostname=hostname, username="root", sock=sock)

Execute the commands
for command in commands:

sdtin, stdout, stderr = client.exec_command(command)
output = stdout.read().decode()
print(f"# Output of '{command}'")
print(output)

close the connection:
client.close()

if __name__ == "__main__":
main()

11.5 virtual_image_download.py

coding: utf-8

______ __
/ __/ /____ ___ / /
____\ \/ __/ -_) -_) / __ _
/ _____/__/__/__/_/_ ____/ /_(_)__ ___
/ /__/ _ \/ _ \/ _ \/ -_) __/ __/ / _ \/ _ \
___/___/_//_/_//_/__/__/__/_/___/_//_/
#
SteelConnection
Simplify access to the Riverbed SteelConnect CX REST API.
#
https://pypi.org/project/steelconnection
https://github.com/grelleum/SteelConnection

from __future__ import print_function

import steelconnection
import os

def main():
sc = steelconnection.SConnect()
sc.get("status")

steelconnection.get_input is compatible with both Python 2 and 3.
serial = steelconnection.get_input("Enter appliance serial number: ")
node = sc.lookup.node(serial)

hypervisor = steelconnection.get_input("Enter the hypervisor type: ")
filename = "scon_vgw_{}_{}.zip".format(serial, hypervisor)

(continues on next page)

11.5. virtual_image_download.py 35

SteelConnection Documentation, Release 1.1.8

(continued from previous page)

Put filename into the HOME/Downloads folder.
home = os.path.expanduser("~")
filepath = os.path.join(home, "Downloads", filename)

success = sc.download_image(node["id"], save_as=filepath, build=hypervisor)
print(success)

if __name__ == "__main__":
main()

36 Chapter 11. Examples

CHAPTER 12

Indices and tables

• genindex

• modindex

37

	License
	Getting Help
	Getting Help with SteelConneciton:
	SteelConnect CX API Reference:

	Getting Started
	Prerequisites
	Create an Object:
	Quickstart

	Installation
	Install
	Upgrade to latest version

	Tutorial
	Finding the realm and org name
	Create the SteelConnection object
	Find the ID for our Organization
	Create a new site
	Set uplink to static IP
	Create virtual gateway
	Assign Port to Zone
	Download Virtual Gateway image
	Fin

	Authentication
	Unattended Mode
	Specifying authentication credentials
	Using environment variables
	Using a .netrc file

	Interactive login
	Connection attempts

	API Guide
	Realms and Organizations
	Understanding the API
	Available Methods
	A Tale of Two APIs
	Crafting your API calls
	Model Schema (Data Payload):

	Retrieving Data

	Errors and Exceptions
	Specific Exceptions:
	Alternate Error Behavior

	Logging
	Convenience Functions
	Lookup
	Lookup Organization
	Lookup Node
	Lookup Site
	Lookup WAN
	Lookup Model

	Virtual Appliance Image Download
	download_image
	Other Binary Data

	Input functions
	Get Input
	Get Username
	Get Password

	sshtunnel

	Examples
	create_site.py
	get_ports.py
	set_node_location.py
	ssh_to_appliance.py
	virtual_image_download.py

	Indices and tables

